Aerospace engineering is the branch of engineering that concerns aircraft, spacecraft and related topics. It is often called aeronautical engineering, particularly when referring solely to aircraft, and astronautical engineering, when referring to spacecraft.
Aerospace engineers design, develop, and test aircraft, spacecraft, and missiles and supervise the manufacture of these products. Those who work with aircraft are called aeronautical engineers, and those working specifically with spacecraft are astronautical engineers. Aerospace engineers develop new technologies for use in aviation, defense systems, and space exploration, often specializing in areas such as structural design, guidance, navigation and control, instrumentation and communication, or production methods. They also may specialize in a particular type of aerospace product, such as commercial aircraft, military fighter jets, helicopters, spacecraft, or missiles and rockets, and may become experts in aerodynamics, thermodynamics, celestial mechanics, propulsion, acoustics, or guidance and control systems.
Some of the elements of aerospace engineering are:
The basis of most of these elements lies in theoretical mathematics, such as fluid dynamics for aerodynamics or the equations of motion for flight dynamics. However, there is also a large empirical component. Historically, this empirical component was derived from testing of scale models and prototypes, either in wind tunnels or in the free atmosphere. More recently, advances in computing have enabled the use of computational fluid dynamics to simulate the behavior of fluid, reducing time and expense spent on wind-tunnel testing.
Additionally, aerospace engineering addresses the integration of all components that constitute an aerospace vehicle (subsystems including power, communications, thermal control, life support, etc.) and its life cycle (design, temperature, pressure, radiation, velocity, life time), leading to extraordinary challenges and solutions specific to the domain of aerospace systems engineering.
See List of aerospace engineering topics.
Contents[hide] |
Popular culture has not been unaffected by this branch of engineering. The term "rocket scientist" is at times used to describe a person of remarkable or in the considered context higher than average intelligence. Aerospace engineering has also been represented as the more "glittery" pinnacle of engineering. The movie Apollo 13 depicts the ground team as group of heroes in a Hollywood fashion glorifying the intelligence and competence of white shirt and tie professionals as a sharp contrast to pop culture trends. This was later extended in more detail in the spin-off series From the Earth to the Moon.
Aerospace (or aeronautical) engineering can be studied at the bachelors, masters, and Ph.D. levels in aerospace engineering departments at many universities, and in mechanical engineering departments at others.
At least the following institutions offer aerospace engineering education (school names followed by accredation where applicable):